equação generalizada Graceli quântica [2]
/ G* = = [ ] ω , , / T] / c [ [x,t] ] =
equação Graceli tensorial quântica [1] G [DR] = .= = |
equação Graceli tensorial quântica [2] G [DR] = .= / / G* = = [ ] ω , , / T] / c [ [x,t] ] = |
G [DR] = =
G [DR] = =
EQUAÇÃO QUÂNTICA TENSORIAL GRACELI.
G [DR] = .=
G [DR] = É O TENSOR GRACELI TENSÃO ENERGIA DE FLUXOS DE DILATAÇÕES E RETRAÇÕES COM CURVATURAS E SIMÉTRICO .
G [DR] = É O TENSOR GRACELI TENSÃO ENERGIA DE FLUXOS DE DILATAÇÕES E RETRAÇÕES COM CURVATURAS E SIMÉTRICO .
G [DR] = =
G [DR] = =
G [DR] = É O TENSOR GRACELI TENSÃO ENERGIA DE FLUXOS DE DILATAÇÕES E RETRAÇÕES COM CURVATURAS E SIMÉTRICO .
G [DR] = É O TENSOR GRACELI TENSÃO ENERGIA DE FLUXOS DE DILATAÇÕES E RETRAÇÕES COM CURVATURAS E SIMÉTRICO .
A mecânica quântica teve suas bases estabelecidas essencialmente pelas seguintes revelações científicas: em 1838, Michael Faraday descobriu os raios catódicos; em 1859, Gustav Kirchhoff enunciou o problema da radiação de corpo negro; em 1877, Ludwig Boltzmann sugeriu que os estados de energia de um sistema físico poderiam ser discretos e, finalmente em 1900, Max Planck formulou a hipótese que toda a energia é irradiada e absorvida na forma de elementos discretos chamados quanta. Segundo a teoria, cada um desses quanta tem energia proporcional à frequência ν da radiação eletromagnética emitida ou absorvida.
/
equação Graceli tensorial quântica [2] G [DR] = .= / / G* = = [ ] ω , , / T] / c [ [x,t] ] = |
A ideia de descrever um fenômeno de radiação eletromagnética pela quantização da energia era extremamente revolucionária para a época; pois, em 1803, Thomas Young já havia comprovado o comportamento ondulatório da luz através do experiência de dupla fenda. Segundo Max Planck, essa teoria é apenas um aspecto teórico dos processos de absorção e emissão de radiação e não tinha nada a ver com a realidade física da radiação em si.[5] Nas palavras do próprio cientista: “em um ato de desespero, pois uma interpretação teórica (para a radiação de corpo negro) deveria ser encontrada … eu estava pronto para sacrificar todas as minhas convicções previas sobre física…”.
No entanto, isso parecia não explicar o efeito fotoelétrico (1839), no qual a incidência de luz em certos materiais pode ejetar elétrons do mesmo. Em 1905, baseando seu trabalho na hipótese quântica de Planck, Albert Einstein postulou que a própria luz é formada por quanta individuais,[6] o que em 1926 ficou conhecido como fóton. Em 1921, Einstein recebeu o Prêmio Nobel pelo efeito fotoelétrico[7].
Louis de Broglie levou mais a fundo a ideia corpuscular e ondulatória da luz e por analogia, postulou que partículas também possuiriam um comprimento de onda, uma onda de matéria. O físico francês relacionou o comprimento de onda (λ) com a quantidade de movimento (p) da partícula, mediante a fórmula:
/
equação Graceli tensorial quântica [2] G [DR] = .= / / G* = = [ ] ω , , / T] / c [ [x,t] ] = |
onde h é a Constante de Planck. De Broglie também postulou que se elétrons fossem propriamente submetidos ao experimento de dupla fenda, também apresentariam um padrão de interferência. Em 1927, O experimento de Davisson–Germer confirmou as previsões de de Broglie, estabelecendo a dualidade onda-partícula da matéria. Em 1929, de Broglie recebeu o Prêmio Nobel pela descoberta da natureza ondulatória do elétron[8].
Em meados da década de 1920, a evolução da mecânica quântica rapidamente fez com que ela se tornasse a formulação padrão para a física atômica. No verão de 1925, Bohr e Heisenberg publicaram resultados que fechavam a "antiga teoria quântica". Da simples postulação de Einstein nasceu uma enxurrada de debates, teorias e testes e, então, a todo o campo da física quântica, levando à sua maior aceitação na quinta Conferência de Solvay em 1927.
Princípios[editar | editar código-fonte]
- Primeiro princípio: Princípio da superposição
Na mecânica quântica, o estado de um sistema físico é definido pelo conjunto de todas as informações que podem ser extraídas desse sistema ao se efetuar alguma medida.
Na mecânica quântica, todos os estados são representados por vetores em um espaço vetorial complexo: o Espaço de Hilbert H. Assim, cada vetor no espaço H representa um estado que poderia ser ocupado pelo sistema. Portanto, dados dois estados quaisquer, a soma algébrica (superposição) deles também é um estado.
Como a norma dos vetores de estado não possui significado físico, todos os vetores de estado são preferencialmente normalizados. Na notação de Dirac, os vetores de estado são chamados "Kets" e são representados como aparece a seguir:
- /
/
equação Graceli tensorial quântica [2] G [DR] = .= / / G* = = [ ] ω , , / T] / c [ [x,t] ] = |
Usualmente, na matemática, são chamados funcionais todas as funções lineares que associam vetores de um espaço vetorial qualquer a um escalar. É sabido que os funcionais dos vetores de um espaço também formam um espaço, que é chamado espaço dual. Na notação de Dirac, os funcionais - elementos do Espaço Dual - são chamados "Bras" e são representados como aparece a seguir:
- Segundo princípio: Medida de grandezas físicas
- a) Para toda grandeza física A é associado um operador linear autoadjunto  pertencente a A:  é o observável (autovalor do operador) representando a grandeza A.
- b) Seja o estado no qual o sistema se encontra no momento onde efetuamos a medida de A. Qualquer que seja os únicos resultados possíveis são os autovalores de do observável Â.
- c) Sendo o projetor sobre o subespaço associado ao valor próprio a probabilidade de encontrar o valor em uma medida de A é:
- onde
/
equação Graceli tensorial quântica [2]
G [DR] = .= /
/ G* = = [ ] ω , , / T] / c [ [x,t] ] =
- d) Imediatamente após uma medida de A, que resultou no valor o novo estado do sistema é
/
equação Graceli tensorial quântica [2]
G [DR] = .= /
/ G* = = [ ] ω , , / T] / c [ [x,t] ] =
- Terceiro princípio: Evolução do sistema
Seja o estado de um sistema ao instante t. Se o sistema não é submetido a nenhuma observação, sua evolução, ao longo do tempo, é regida pela equação de Schrödinger:
/
equação Graceli tensorial quântica [2] G [DR] = .= / / G* = = [ ] ω , , / T] / c [ [x,t] ] = |
onde é o hamiltoniano do sistema.
Em eletromagnetismo e em geometria diferencial, o tensor eletromagnético ou tensor campo eletromagnético (às vezes chamado de tensor de Faraday ou bivector de Maxwell) é um objeto matemático que descreve o campo eletromagnético de um sistema físico. O tensor de campo foi usado pela primeira vez após a formulação do tensor quadridimensional da relatividade especial e foi introduzido por Hermann Minkowski. O tensor permite que algumas leis físicas possam ser escritas de uma forma muito concisa.
Definição[editar | editar código-fonte]
O tensor electromagnético, convencionalmente marcado F, é definido como a derivada exterior do quadripotencial eletromagnético, A, um diferencial de forma 1:[1][2]
/
equação Graceli tensorial quântica [2] G [DR] = .= / / G* = = [ ] ω , , / T] / c [ [x,t] ] = |
Comentários
Postar um comentário